3.1.30 \(\int \frac {\text {csch}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [30]

Optimal. Leaf size=48 \[ -\frac {\sqrt {b} \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\coth (c+d x)}{a d} \]

[Out]

-coth(d*x+c)/a/d-arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))*b^(1/2)/a^(3/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3744, 331, 211} \begin {gather*} -\frac {\sqrt {b} \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\coth (c+d x)}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(3/2)*d)) - Coth[c + d*x]/(a*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {\text {csch}^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{x^2 \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac {\coth (c+d x)}{a d}-\frac {b \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{a d}\\ &=-\frac {\sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\coth (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 48, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {b} \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\coth (c+d x)}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

-((Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(3/2)*d)) - Coth[c + d*x]/(a*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(187\) vs. \(2(40)=80\).
time = 2.53, size = 188, normalized size = 3.92

method result size
risch \(-\frac {2}{d a \left ({\mathrm e}^{2 d x +2 c}-1\right )}+\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{2 a^{2} d}-\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a +2 \sqrt {-a b}-b}{a +b}\right )}{2 a^{2} d}\) \(112\)
derivativedivides \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}+2 b \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )-\frac {1}{2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(188\)
default \(\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}+2 b \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )-\frac {1}{2 a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}}{d}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/2/a*tanh(1/2*d*x+1/2*c)+2*b*(-1/2*(-a+(b*(a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*
a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*(a+(b*(a+b))^(1/2)+b)/a/(b*(a+
b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)
))-1/2/a/tanh(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 62, normalized size = 1.29 \begin {gather*} \frac {b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} a d} + \frac {2}{{\left (a e^{\left (-2 \, d x - 2 \, c\right )} - a\right )} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

b*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a*d) + 2/((a*e^(-2*d*x - 2*c) - a)*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 148 vs. \(2 (40) = 80\).
time = 0.39, size = 618, normalized size = 12.88 \begin {gather*} \left [\frac {{\left (\cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2} - 1\right )} \sqrt {-\frac {b}{a}} \log \left (\frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a^{2} + 2 \, a b + b^{2}\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{2} + a^{2} - b^{2}\right )} \sinh \left (d x + c\right )^{2} + a^{2} - 6 \, a b + b^{2} + 4 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cosh \left (d x + c\right )^{3} + {\left (a^{2} - b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) - 4 \, {\left ({\left (a^{2} + a b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a^{2} + a b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a^{2} + a b\right )} \sinh \left (d x + c\right )^{2} + a^{2} - a b\right )} \sqrt {-\frac {b}{a}}}{{\left (a + b\right )} \cosh \left (d x + c\right )^{4} + 4 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + {\left (a + b\right )} \sinh \left (d x + c\right )^{4} + 2 \, {\left (a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, {\left (a + b\right )} \cosh \left (d x + c\right )^{2} + a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{3} + {\left (a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + a + b}\right ) - 4}{2 \, {\left (a d \cosh \left (d x + c\right )^{2} + 2 \, a d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a d \sinh \left (d x + c\right )^{2} - a d\right )}}, -\frac {{\left (\cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2} - 1\right )} \sqrt {\frac {b}{a}} \arctan \left (\frac {{\left ({\left (a + b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (a + b\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + {\left (a + b\right )} \sinh \left (d x + c\right )^{2} + a - b\right )} \sqrt {\frac {b}{a}}}{2 \, b}\right ) + 2}{a d \cosh \left (d x + c\right )^{2} + 2 \, a d \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a d \sinh \left (d x + c\right )^{2} - a d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*((cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*sqrt(-b/a)*log(((a^2 + 2*a*b + b
^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^
4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^
2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a^2
+ a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 - a*b)*
sqrt(-b/a))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(
a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 +
(a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) - 4)/(a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*sinh(d*x + c) +
 a*d*sinh(d*x + c)^2 - a*d), -((cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2 - 1)*sqrt(b/
a)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a -
 b)*sqrt(b/a)/b) + 2)/(a*d*cosh(d*x + c)^2 + 2*a*d*cosh(d*x + c)*sinh(d*x + c) + a*d*sinh(d*x + c)^2 - a*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {csch}^{2}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(csch(c + d*x)**2/(a + b*tanh(c + d*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.65, size = 69, normalized size = 1.44 \begin {gather*} -\frac {\frac {b \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} a} + \frac {2}{a {\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

-(b*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a) + 2/(a*(e^(2*d*x + 2*c
) - 1)))/d

________________________________________________________________________________________

Mupad [B]
time = 1.31, size = 136, normalized size = 2.83 \begin {gather*} \frac {2}{a\,d-a\,d\,{\mathrm {e}}^{2\,c+2\,d\,x}}-\frac {\sqrt {b}\,\mathrm {atan}\left (\frac {\sqrt {a^3\,d^2}}{2\,a\,\sqrt {b}\,d}-\frac {\sqrt {b}\,\sqrt {a^3\,d^2}}{2\,a^2\,d}+\frac {{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\sqrt {a^3\,d^2}}{2\,a\,\sqrt {b}\,d}+\frac {\sqrt {b}\,{\mathrm {e}}^{2\,c}\,{\mathrm {e}}^{2\,d\,x}\,\sqrt {a^3\,d^2}}{2\,a^2\,d}\right )}{\sqrt {a^3\,d^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sinh(c + d*x)^2*(a + b*tanh(c + d*x)^2)),x)

[Out]

2/(a*d - a*d*exp(2*c + 2*d*x)) - (b^(1/2)*atan((a^3*d^2)^(1/2)/(2*a*b^(1/2)*d) - (b^(1/2)*(a^3*d^2)^(1/2))/(2*
a^2*d) + (exp(2*c)*exp(2*d*x)*(a^3*d^2)^(1/2))/(2*a*b^(1/2)*d) + (b^(1/2)*exp(2*c)*exp(2*d*x)*(a^3*d^2)^(1/2))
/(2*a^2*d)))/(a^3*d^2)^(1/2)

________________________________________________________________________________________